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Abstract Climate and hydrologic variables such as temperature, precipitation, streamflow, and
baseflow generally do not follow Gaussian distribution due to the presence of outliers and heavy tails.
Therefore, they are usually analyzed using the nonparametric Wilcoxon rank sum test rather than
parametric methods like classical t tests and analysis of variance. Furthermore, in addition to having a
non-Gaussian distribution, these data exhibit monthly/seasonal variability, which leads to within
month/season cluster correlation. In this study, a nonparametric procedure, called joint rank fit (JRFit), for
analyzing cluster-correlated data was implemented and compared against traditional methods such as
restricted maximum likelihood, least absolute deviations, and rank-based fit (a model-based extension of
Wilcoxon rank sum) for studying the coupled effect of the phases of El Niño–Southern Oscillation and
Atlantic Multidecadal Oscillation on baseflow levels. The results from a large Monte Carlo simulation
experiment showed that JRFit was more efficient than the other three methods for data with (i) high
variability, (ii) outliers due to contamination, or (iii) strong monthly/seasonal correlation. The efficiency
gain of JRFit was up to 50% compared to restricted maximum likelihood for heavy-tailed and highly
correlated data. Predictive performance evaluated using the mean absolute prediction error and mean
prediction standard error from an out-of-sample cross-validation study showed JRFit to be optimal for
providing predictions of baseflow on the basis of the phases of El Niño–Southern Oscillation and Atlantic
Multidecadal Oscillation. Thus, it is recommended that JRFit be implemented in hydroclimatic studies to
provide powerful inference when there is evidence of clustering in the data.

1. Introduction

Oceanic-atmospheric phenomena such as El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation,
Atlantic Multidecadal Oscillation (AMO), and North Atlantic Oscillation are natural, cyclical (recurring at inter-
annual, decadal, and multidecadal scales) phenomena that are caused by fluctuations in sea surface tem-
perature (SST) and sea level pressure (Kiladis & Diaz, 1989; MacDonald & Case, 2005; Ropelewski &
Halpert, 1986). These oscillations have strong effect on components of hydrologic cycle across the world
(Kahya & Dracup, 1993; Lee & Julien, 2016; Regonda et al., 2005; Schulte et al., 2017; Steirou et al., 2017;
Tootle et al., 2005). Therefore, studies of interannual, decadal, and multidecadal climate variability phenom-
ena and their interactions with hydrologic processes can provide useful information toward strategies for
mitigating their adverse effects on water resources (Climate Research Committee and National Research
Council, 1995).

ENSO, a major mode of climate variability affecting the global climate system (Diaz & Markgraf, 1992), is the
fluctuation (occurring with a periodicity of 2 to 7 years) in SST in the east central equatorial Pacific Ocean.
ENSO has three phases, namely, neutral, El Niño, and La Niña (Philander, 1990). The terms El Niño and La
Niña refer to respective warming and cooling of SST at eastern tropical Pacific. Similar to ENSO, AMO is caused
by the fluctuations in ocean atmospheric temperature. However, it occurs in the North Atlantic Ocean. High
and low SST anomalies are characterized by warm/positive and cold/negative phases, respectively, of AMO
cycles that oscillate with a periodicity of 60–80 years (Johnson et al., 2013; Tootle et al., 2005). The importance
of understanding the teleconnections between natural climate and hydrologic variability has increased since
its near-future predictability helps in planning and formulating water resources management (Cayan et al.,
1999; Poveda et al., 2001; Räsänen & Kummu, 2012; Schmidt et al., 2001; Zorn & Waylen, 1997). These
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teleconnections (coupled/interaction studies) have been widely exploited in long lead time forecasts of
streamflow (e.g., Chiew et al., 2003; Gutierrez & Dracup, 2001; Tootle et al., 2005).

To test and quantify the teleconnections of ocean atmospheric phenomena on hydroclimatic variables such
as temperature, precipitation, streamflow, and groundwater, the conventional nonparametric Wilcoxon rank
sum (WRS) test has been widely applied (Chiew et al., 1998; Diaz & Markgraf, 1992; Johnson et al., 2013;
Keener et al., 2010; Mitra et al., 2014; Roy, 2006; Tootle et al., 2005). Since hydroclimatic data sets are typically
skewed (not normally distributed and contain outliers), nonparametric procedures provide a viable approach
to minimize the influence of outliers and nonnormality in testing and estimation (Helsel & Hirsch, 2002;
Johnson et al., 2013; Tootle et al., 2005). The nonparametric WRS test makes no distributional assumptions
on data and is resistant to the adverse effects of outliers (Bradley, 1968; Hogg et al., 2005). Therefore, WRS
is more suitable than parametric methods such as classical t tests and analysis of variance for testing
hypotheses when nonnormality is evident (Crawford et al., 1983; Hogg et al., 2005; Rousseeuw & Leroy,
1987). Although the two sample WRS test is ideal for dealing with data sources that are nonnormal, it does
not readily extend to testing the interactive effects of multiple climatic oscillation variables. WRS requires
splitting the data into different phases of climatic cycles in order to detect significant differences and quantify
the comparative effects of multiple climatic oscillations on hydroclimatic variables (Johnson et al., 2013; Mitra
et al., 2014; Tootle et al., 2005). Therefore, previous studies have not performed direct interaction (coupled)
tests between two ocean atmospheric phenomena but instead made inferences about interaction by
splitting the data into different phases of climatic oscillations (Johnson et al., 2013; Keener et al., 2010;
Mitra et al., 2014; Roy, 2006; Tootle et al., 2005).

Furthermore, as Galbraith et al. (2010) demonstrated, despite its robustness, the performance of WRS is
suboptimal when data exhibit high monthly or seasonal clustering. Monthly or seasonal clustering refers
to grouping of data points resulting from monthly (seasonal) variation of data points that is higher than
the variation within months (seasons). In addition to outliers and heavy tails, meteorological and hydrological
variables such as temperature, precipitation, streamflow, baseflow, and groundwater display monthly or sea-
sonal clustering in that their values tend to be similar on a monthly or seasonal basis, irrespective of year
(Singh et al., 2015). Thus, WRS is typically performed on standardized monthly or seasonal anomalies that
are obtained from subtracting long-term monthly or seasonal medians and dividing by standard deviation
(Johnson et al., 2013; Mitra et al., 2014). In addition, Rosner et al. (2003) and Datta and Satten (2005) have
proposed modified WRS tests for cluster-correlated data. While these tests are appropriate for clustered
non-Gaussian data, they still do not allow direct testing for coupled effects, measuring effect sizes, including
other explanatory variables, or making predictions.

Robust approaches for modeling include the least absolute deviations (LAD) estimator (Koenker & Basset,
1978) and rank-based fit (RFit) (Adichie, 1967; Hettmansperger & McKean, 2011; Jaeckel, 1972; Jureckova,
1971). RFit is a direct extension of WRS to amodeling framework. Neither LAD nor RFit accounts for correlated
hydrological responses. The common modeling approach employed for studying phenomena that include
cluster-correlated (monthly or seasonal) responses is via the linear mixed effect (LME) model (Milliken &
Johnson, 2004). Typically, the fitting of LMEs involves the use of the parametric restricted maximum likeli-
hood (REML) method under the assumption that the responses are derived from the Gaussian distribution
(Bates et al., 2015; Milliken & Johnson, 2004). REML is appealing since it allows one to estimate not only effect
sizes and test their significance but also intraclass correlation coefficient that measures cluster effects
(Milliken & Johnson, 2004). Since the assumption that the responses follow the Gaussian distribution may
not be appropriate for hydroclimatic data, the use of joint rank fit (JRFit) procedure (Kloke et al., 2009) is pro-
posed in this study that gives a genuine nonparametric alternative to REML for fitting LME models. JRFit, like
RFit, formulates the WRS method as a linear model but additionally estimates the effect of cluster correlation
in the model without requiring any assumption on the distribution of the data.

Therefore, the goal of this study was to propose a modeling framework to (1) provide a robust mechanism for
testing of main and interaction effects of climate variables on hydrological variables, (2) account for cluster
correlation in hydrological data, and (3) give accurate estimates and out-of-sample predictions of hydrologi-
cal variables using climate phenomena. The interaction or the coupled effect of interannual andmultidecadal
ocean atmospheric phenomena such as ENSO and AMO on baseflow levels was modeled, tested, and com-
pared using the LAD, RFit, REML, and JRFit procedures. In this study, the authors aim to demonstrate the
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application and examine the efficiency of the JRFit procedure against other parametric and nonparametric
procedures (RFit, LAD, and REML) in evaluating the influence of an interannual cycle (e.g., ENSO) and a
multidecadal cycle (e.g., AMO) on baseflow levels as well as providing out-of-sample predictions. The paper
is organized as follows. Section 2 presents baseflow data and methods, and section 3 presents the results of
simulation experiments as well as results of an analysis using baseflow data. Finally, section 4 provides
conclusions and recommendations of the study.

2. Data and Methods

This study was performed in the Apalachicola-Chattahoochee-Flint (ACF) River Basin, which is located in
southeastern United States (Figure 1; Mitra et al., 2014; Singh et al., 2015). It covers approximately
50,800 km2 where much of the basin lies in Georgia, and smaller areas of the basin are contained in
southeastern Alabama and northwestern Florida (Figure 1). Soil of the ACF river basin consists of different
land resource areas where 97% of this basin is covered by Southern Piedmont, Georgia Sand Hills,
Southern Coastal Plain, and Eastern Gulf Coast Flatwoods land resource areas (Couch et al., 1996). The
physiography of this river basin contains parts of the Blue Ridge, Piedmont, and Coastal Plain. There are six
aquifers: the surficial aquifer system, the Floridan aquifer system, the Claiborne aquifer, the Clayton aquifer,
the Providence aquifer, and the crystalline rock aquifer underlie this basin (Couch et al., 1996). The climate of
the ACF basin is humid subtropical with mild winters and long summers. The average annual precipitation
and temperature of this basin are about 127 cm and 17 °C, respectively (Mitra et al., 2014; Singh et al.,
2015). The ACF River Basin is predominantly affected by ENSO-induced droughts, and studies have shown
that other climate variability cycles (such as AMO) also have considerable influence in the region (Enfield
et al., 2001; Hansen & Maul, 1991; Johnson et al., 2013; Kiladis & Diaz, 1989; Schmidt et al., 2001; Singh
et al., 2015). Moreover, low baseflow due to municipal, industrial, and agricultural water withdrawals is often
a concern in the humid Southeast United Sates. Specifically, in the study basin, low baseflows threaten pro-
tected endangeredmussel species and diminish U.S. Army Corps of Engineers’ ability to meet minimum flows
requirements in the Apalachicola River and Bay during droughts. Therefore, in this basin, the relationship
between baseflow and the coupled effects of interannual (ENSO) and multidecadal (AMO) climatic phenom-
ena was studied using several parametric and nonparametric procedures (i.e., LAD, REML, RFit, and JRFit).
Furthermore, the efficiency of these procedures was examined based on their estimation and prediction
errors. A detailed description of the models used for the estimation and prediction of baseflow is provided in
section 2.3. It is to be noted that baseflow data were used for the demonstration purpose only. Other nonnor-
mal, cluster-correlated hydrological data with heavy tails and outliers can also be used for this purpose.

2.1. Data Sets
2.1.1. Baseflow Data
In order to study the effect of climate variability on baseflow, it is important to obtain unregulated streamflow
data sets (those that are not affected by reservoirs and dams). In this study, the streamflow gauging stations
on the Flint River (Figure 1) were selected since Flint River is relatively unaffected by water control structures
as compared to the other parts of the ACF basin that are highly regulated. For example, the Chattahoochee
River has five federal dams and six private river dams, while the Flint River has only two small, run-of-the-river
dams (Johnson et al., 2013). Daily streamflow data (in cubic feet per second, ft3/s) for approximately 59 years
were collected from six U.S. Geological Survey gauging stations (Table 1). Baseflow were separated from daily
streamflow using Web-based Hydrograph Analysis Tool that has two digital filter methods for baseflow
separation (Lim et al., 2005; Singh et al., 2015), namely, BFLOW and Eckhardt. In this study, Eckhardt filter
method with baseflow index 0.9, which is used for perennial rivers (Lim et al., 2005), was used for baseflow
separation. The equation used for the Eckhardt filter method is given below.

bt ¼ 1� BFImaxð Þαþ bt�1 þ 1� αð ÞBFImaxQt

1� αBFImax
(1)

where bt is the filtered baseflow at time step t, BFImax is the maximum value of long-term ratio of baseflow to
total streamflow, α is the filter parameter, bt � 1 is the filtered baseflow at time step t�1, and Qt is the total
streamflow at time step t. Finally, the daily values were changed into monthly cubic meters per second
(m3/s) for further analysis. The time series plots of monthly baseflow levels for each station are presented in
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Figure 1. Map of Apalachicola-Chattahoochee-Flint River basin showing the location of the gauging stations selected for
this study. The Apalachicola-Chattahoochee-Flint River basin is located in Alabama, Georgia, and Florida. The streamflow
gauging stations are shown as green dots, and it is to be noted that the flows in the Flint River are mostly unregulated.

Table 1
Streamflow Gauging Stations Used in This Study Showing the USGS Station ID, Location, Their Assigned Names Used in the Manuscript, and Their Respective Date Ranges

Station ID Location Latitude Longitude Given name Drainage area (km2) Data range (year)

02344500 Flint River near Griffin, GA 33.244 �84.429 A 704 1950–2008
02347500 Flint River near Carsonville, GA 32.721 �84.232 B 4,791 1950–2008
02349500 Flint River at Montezuma, GA 32.298 �84.044 C 7,511 1950–2003
02349605 Flint River near Montezuma, GA 32.293 �84.043 D 7,563 1950–2008
02352500 Flint River, Albany, GA 31.594 �84.144 E 13,753 1950–2008
02353000 Flint River, Newton, GA 31.307 �84.339 F 14,867 1957–2008

Note. USGS = U.S. Geological Survey.

10.1029/2017WR022254Water Resources Research

SINGH ET AL. 6951



Figure 2. The quantile-quantile plots (Figure 3) indicate that baseflow has a non-Gaussian distribution with
heavy tails and potential outliers.
2.1.2. Oceanic-Atmospheric Climate Variability Indices
In this study, the Niño 3.4 SST index (ERSST.v3b) was used to define ENSO phases and durations (Trenberth,
1997; Trenberth & Stepaniak, 2001). The Niño 3.4 index is based on the SST anomalies in the Niño 3.4 region
(5°N to 5°S, 120–170°W; Trenberth, 1997). Themonthly Niño 3.4 index values were obtained from the National
Oceanic and Atmospheric Administration, Climate Prediction Center, United States (http://origin.cpc.ncep.
noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). When Niño 3.4 index value is between
�0.5 and +0.5 °C, ENSO is considered to be in neutral phase, and indices above +0.5 or below �0.5 °C values
indicate that ENSO is in El Niño or La Niña phases, respectively (Kiladis & Diaz, 1989; Ropelewski &
Halpert, 1986).

The AMO index is identified as the coherent pattern of SST variability in the North Atlantic Ocean (0–70°N;
Enfield et al., 2001; Schlesinger & Ramankutty, 1994; Tootle et al., 2005) and is defined by the warming and
cooling pattern of SST. The warm/positive and cold/negative phases of AMOwere defined based on the posi-
tive and negative numerical values from 121-month smoothed index values, and each phase lasts for about
20–40 years. AMO index values were obtained from the Physical Sciences Division of the Earth Systems
Research Laboratory, National Oceanic and Atmospheric Administration, USA (Earth Systems Research
Laboratory, 2012; Johnson et al., 2013; https://www.esrl.noaa.gov/psd/data/timeseries/AMO/). The positive

Figure 2. Monthly baseflow (m3/s) time series plots for stations A–F.
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phase of AMO considered in this study spanned from 1950 to 1963 and 1995 to 2008, and the negative phase
spanned from 1964 to 1994.

2.2. Statistical Methods
2.2.1. WRS Procedure
The problem of testing for significance of the effect Δ on hydrological responses to the change from one
phase to another of a climate variable is often represented as a two-population statistical testing problem.
Given hydrologic data U1, …, Um and V1, …, Vn from two climate phases, where m and n are the respective
sample sizes, with expected effect of phase change Δ (=V� U) only, interest lies in testing the null hypothesis
H0 : Δ = 0 versus the alternative HA : Δ ≠ 0, HA : Δ > 0, or HA : Δ < 0. The WRS test proceeds by ranking all the
data (U1,…, Um and V1, …, Vn) together from the smallest (rank 1) to the largest (rank m + n) and then sum-
ming the ranks of one of the samples, say V, to get the WRS statisticW = R(V1) +⋯ + R(Vn) (Lehmann, 1975).
The standardized WRS statistic follows an asymptotic standard Gaussian distribution (Lehmann, 1975). The
estimator of the treatment effect associated with the WRS is the median of all pairwise differences
(Hodges & Lehmann, 1963)

eΔ ¼ median Vi � Uj
� �

; 1≤ i≤n; 1≤ j≤m (2)

and eΔ is approximately Gaussian with mean Δ and standard deviation τ 1=m þ 1=nð Þ1=2 , where τ is a scale
parameter that needs to be estimated from the data (Koul et al., 1987). Asymptotic relative efficiency
(ARE) comparisons of WRS test and the classical t test indicate that the t test is only 4.5% more powerful
than the WRS test when the data distribution is Gaussian; however, the WRS is 10% and 24% more powerful
than the t test, for the heavier-tailed logistic and t distribution with 5 degrees of freedom, respectively
(Lehmann, 1975).

Hydrological and climatic data have several interacting variables, and it is often relevant to understand the
interaction effects. Moreover, a modeling framework that allows for accurate estimation and prediction of
hydrological phenomena from climate variables, in addition to testing of hypotheses, is of interest. For this
reason, a generalization of the WRS to the linear model, RFit, first proposed by Jaeckel (1972) is considered
in this study.
2.2.2. General Linear Models: RFit and LAD
Consider the general linear model that relates a set of p predictors (X) collected on n subjects to their
response (Y) using the plane:

Figure 3. Quantile-Quantile plots for stations A–F.
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Y ¼ α1n þ Xβ þ ε; (3)

where Y is an n × 1 vector of responses, X is an n × pmatrix of predictors, ε is an n × 1 vector of random errors,
and 1n is an n × 1 vector of ones (Seber & Lee, 2003). Estimation of the p × 1 vector of slope parameters
β = (β1,…, βp)

T and test for the significance of the components of β are objectives of interest.

The Jaeckel (1972) rank-based fit (RFit) of β, say, eβ, minimizes the objective function:

D βð Þ ¼ ∑nk¼1φ
R ek βð Þð Þ
nþ 1

� �
ek βð Þ (4)

where ek(β) is the kth entry of Y� Xβ, R(ek(β)) is the rank of ek(β) among e1(β),…, en(β), and φ is a nondecreas-
ing function defined on the interval (0, 1). Jaeckel (1972) established that D(β) is a convex, continuous, and
positive function of β. When φ is odd about 1=2 , a natural estimator of the intercept is the median of the
estimated residuals e1 eβ� �

;…; en eβ� �
. Heiler and Willers (1988) have shown that the eβ follows an asymptotic

p-dimensional Gaussian distribution withmean β and covariancematrix τ2φ X 0Xð Þ�1, where τ2φ represents a scale
parameter analogous to the error variance σ2 in least squares estimation (Hettmansperger &McKean, 2011). A
consistent estimator eτ2φ of τ2φ is given in Koul et al. (1987). The estimator of τ2φ along with the asymptotic
distribution can be used to construct test statistics for testing various types of hypotheses. Particularly, a
Wald t test for the significance of the jth individual slope, 1 ≤ j ≤ p, uses the statistic

Wj ¼ eβjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieτ2φ X 0Xð Þ�1
jj

q (5)

and the null hypothesis H0 : βj = 0 is rejected in favor of HA : βj ≠ 0 if |Wj|> tn � p � 1(γ/2), where tn � p � 1(γ/2) is
the upper γ/2 percentile of the t distribution with n � p � 1 degrees of freedom (Hogg et al., 2005). A Wald t
test uses a t statistic formulated on the basis of the asymptotic Gaussian distribution of an estimator where a
consistent estimator of the true variance is used in the calculation of the standard error of the estimator
(Hogg et al., 2005). This RFit Wald test is equivalent to the WRS test in the case of a linear model with single
binary (0 and 1) regressor indicating group membership (Hettmansperger & McKean, 2011). For example, if Y
is baseflow and X is an indicator corresponding to the phases of ENSO, then the Wald test for significance of β
using the RFit estimator in the regression Y = α + βX + ε is identical to theWRS test comparing baseflow of two
phases of ENSO.

A classical robust approach for estimating β is the LADmethod (Koenker & Basset, 1978), where the 1-norm of
the errors ‖ε‖1 = ∑ ∣ εi∣ is minimized to obtain the estimator of β. If the errors ε1, …, εn are assumed inde-
pendently drawn from a distribution that has probability density function f, then the LAD estimator of β
follows an approximate p-dimensional Gaussian distribution with mean β and covariance matrix ξ2(XTX)�1,
where ξ = (2f(0))�1 (Hettmansperger & McKean, 2011).
2.2.3. Linear Models With Cluster Correlation: JRFit and REML
Assume that a total of N = n1 + ⋯ + nm observations in m clusters is available, where cluster k has nk
observations. Within cluster k, let Yk, Xk, and εk denote the nk × 1 vector of responses, the nk × p design matrix,
and the nk × 1 vector of errors, respectively. Let 1nk denote a vector of nk ones. Then the linear model for Yk,
k = 1, …, m, is

Yk ¼ α1nk þ Xkβ þ εk ; (6)

where α and β represent the scalar intercept and the p × 1 vector of slope parameters, respectively (Bates
et al., 2015; Kloke et al., 2009). The errors in the same cluster are not assumed to be independent, but errors
in different clusters are assumed independent. The within cluster covariance matrix denoted by
Cov(εk) = σ2Ωk is an nk × nk positive definite matrix. Model (6) reduces to the independent general linear
model (3) if Ωk ¼ Ink for all k. In this study, Ωk is assumed to be compound symmetric (Milliken & Johnson,
2004); that is, all the off-diagonal elements are equal, and all the diagonal elements are also equal. In this
study the clusters are monthly or seasonal and there is no indication that the underlying correlations are
different for different years. Monthly baseflow values fluctuate around the same value irrespective of year
but the level tends to be different from month to month (Singh et al., 2015).
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An extension of RFit to the clustered data case is given by JRFit estimation method that starts by stacking Yk
into an N × 1 response vector Y. The N × p predictor matrix X is similarly defined by stacking Xk. The residuals
for the stacked model are defined by the vector e(β) = Y � Xβ with ith element ei(β), i = 1,…, N. JRFit defines

the dispersion function using e(β) as DJR βð Þ ¼ ∑Ni¼1φ
R ei βð Þð Þ
nþ1

� �
ei βð Þ. Thus, JRFit is exactly the minimization of

Jaeckel’s dispersion for linear models with cluster-correlated errors with the resulting estimator denoted

by eβJR . Kloke et al. (2009) showed that eβJR follows an asymptotic Gaussian distribution with mean β and

covariance matrix given by Vφ ¼ τ2φ XTX
� ��1

∑mk¼1X
T
kΣφ;kXk

� �
XTX
� ��1

, where Σφ, k = Cov(φ(F(εk))) is the m × m

score intracluster covariance matrix. This asymptotic distribution is used to derive Wald tests of
significance of the model parameters.

It is noted that both RFit and JRFit provide identical estimates of β because they use the same formulation in
their fixed effects components. However, their random effects components are different; thus, the standard
errors of the estimators from RFit and JRFit are different (Kloke et al., 2009). JRFit calculates the within month
variation in baseflow separately from the betweenmonth variation, which is accounted for as random effects.
For example, if we only want to study the effect of ENSO phases on baseflow, JRFit calculates baseflow differ-
ences between El Niño and La Niña phases within each month and the overall effect is compiled from the
monthly effects. In RFit, since between month variations are not considered systematically as random effects,
large month-to-month variations inflate the variance of the model random error. Thus, the standard errors of
the JRFit estimators are generally smaller than those of RFit estimators and substantially smaller for data with
high within month correlation.

The traditional approach of fitting model (6) involves using likelihood methods within the LMEs model
framework. Absent any distributional information on the population from which the data are drawn, the
likelihood equation is constructed based on the assumption that εk follow an nk-dimensional Gaussian
distribution with mean 0 and variance-covariance matrixΩk. Estimation is performed using the REMLmethod
by first using regression to estimate the fixed effects residuals and using these residuals to estimate the

variance components (Bates et al., 2015). The REML estimator of β, denoted by bβREML , has an asymptotic

Gaussian distribution with mean β and variance-covariance matrix V ¼ σ2 ∑mk¼1X
T
k Ink þ XT

kΩkXk
� ��1

Xk

� ��1
.

For the linear score function, the ARE for comparing the JRFit estimator with the REML estimator is given by
(Kloke et al., 2009)

ARE eβJR;bβREML

� �
¼ 1� ρ

1� ρF
12σ2 ∫f 2 tð Þdt� �2

(7)

where ρ is the within cluster correlation and ρF = Cor(F(ε11), F(ε12)) is the within cluster rank correlation. The
usual approach involves estimating the integral in equation (7) using kernel density estimates of the data
distribution f on the basis of a preliminary fit of the model (Koul et al., 1987). In this study, the effects of tail
thickness, outliers, and correlation on the efficiency of JRFit (as well as LAD and RFit) versus REML were
investigated using a Monte Carlo simulation experiment (section 2.4) since analytical computation of AREs
involving eβJR is generally very complicated and often cannot be derived in closed form.

2.3. Baseflow Models

The effect of climate variability phenomena ENSO and AMO on baseflow (BF) was estimated using the linear
model (Model 1):

BF ¼ β0 þ β1ENSOþ β2AMOþ ε (8)

where ε represents random errors and ENSO = 0 and ENSO = 1 represent the La Niña and El Niño phases of
ENSO and AMO = 0 and AMO = 1 represent the positive and negative phases of AMO, respectively. The
baseline BF value is β0, which is the expected baseflow for the combination of La Niña and AMO positive
phases. The value of β1 measures the change in baseflow from baseline due to change from La Niña to El
Niño for the same AMO phase, while β2 measures the change in baseflow from baseline due to change from
AMO positive to AMO negative for the same ENSO phase (Table 2). Since this is an additive model, if ENSO
changes from La Niña to El Niño and AMO changes from positive to negative, the expected change in
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baseflow will be β1 + β2 (Table 2). This does not capture the modulation effects of the phases of one climate
phenomenon by another one.

In this study, the coupled effect of climate variability phenomena on baseflow was studied using a linear
model that allows us to test and estimate the interaction of the ENSO and AMO and their effect on baseflow.
For that, we used the statistical model (Model 2):

BF ¼ β0 þ β1ENSOþ β2AMOþ β3ENSO�AMOþ ε (9)

where β3 measures the interaction (coupled) effect of ENSO and AMO. The significance of the interaction
effect β3 indicates that the effect on baseflow of at least one of the phases of ENSO depends on the phases
of AMO.

Under Model 1, the effect on expected baseflow of changing ENSO phase from La Niña to El Niño is β1 regard-
less of whether AMO is in its positive phase or negative phase (Table 2). Under Model 2, however, the effect
on expected baseflow of changing ENSO phase from La Niña to El Niño is β1for the positive phase of AMO but
β1+ β3 for the negative phase of AMO (Table 2). Hence, β3represents the effect on expected baseflow of the
interaction of ENSO and AMO. Its significance indicates significant baseflow modulation of ENSO by the
phases of AMO (Table 2). Model 2 is estimated as a LME model where the errors ε are cluster correlated. In
our study, JRFit, REML, LAD, and RFit were used to fit Model 2. The last two do not take cluster correlation into
account. For the methods that account for cluster correlation, intraclass correlation coefficients were calcu-
lated as the proportion of total baseflow variance that is due to monthly variability (West et al., 2007).
Moreover, the WRS test for clustered data (Rosner et al., 2003) was applied to baseflow data, where individual
climate variability phases were compared separately since the method is not capable of including ENSO and
AMO simultaneously as in Model 1 and Model 2.

Since linear models can be used for prediction, an out-of-sample cross validation was performed to evaluate
the predictive performance of JRFit, REML, LAD, and RFit. The out-of-sample cross validation used a 10-fold
cross-validation procedure where the data were randomly divided into 10 parts and 9 of the 10 parts were
used as a training set while the remaining one part was used as a testing set. All methods were used to fit
Model 2 using the training data, and resulting models were used for predicting baseflow values of the
held-out sample. Prediction errors were computed by calculating the mean absolute prediction error
(MAPE) between the predicted baseflow values and the true testing set baseflow values. Similarly, mean
prediction standard errors (MPSE) were calculated from the testing set prediction variances. The MAPE and
MPSE values of the different methods from the tenfold cross validation were compared using paired t tests
(Wong et al., 2014). These were corrected for multiple comparisons using the Bonferroni procedure (Bretz
et al., 2011).

2.4. Monte Carlo Evaluation of the Relative Efficiency of JRFit

A Monte Carlo simulation was used to evaluate the relative efficiency (RE) of JRFit. In this simulation, 60-year
hypothetical climate data, with 30 years assumed to be under climate phase A and the remaining 30 assumed
to be under climate phase B, were generated. The responses (baseflow values) were assumed to bemeasured
seasonally; that is, there were four measured responses per year corresponding to each season. A compound
symmetric seasonal clustering structure was imposed where within cluster observations were correlated with
correlation ρ. To simulate the heavy-tailed nature of climate data, the responses were generated using the t

Table 2
Expected Baseflow Values Under Model 1 and Model 2

ENSO AMO Expected baseflow under Model 1 Expected baseflow under Model 2

0 0 β0 β0
1 0 β0 + β1 β0 + β1
0 1 β0 + β2 β0 + β2
1 1 β0 + β1 + β2 β0 + β1 + β2+ β3

Note. ENSO = 0 and ENSO = 1 represent the La Niña and El Niño phases of ENSO, and AMO= 0 and AMO= 1 represent the
positive and negative phases of AMO, respectively. AMO = Atlantic Multidecadal Oscillation; ENSO = El Niño–Southern
Oscillation.
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distribution with various degrees of freedom. The tails of the t distribution are heavy for small degrees of
freedom, and they approach the tails of the Gaussian distribution for degrees of freedom approaching
infinity. Thus, a single set of responses under the two climate phases A and B was generated as

YA ¼ T30 d; ρð Þ þ S (10)

YB ¼ T30 d; ρð Þ þ Δþ S (11)

where T30(d, ρ) is a random variate from the 30-dimensional t distribution with degrees of freedom d and
correlation ρ, Δ is the effect of climate phase change, and S is the season effect. Therefore, the difference
in expected responses of two different climate phases is E(YB) � E(YA) = Δ. Different techniques were judged
by how precisely and accurately they were able to recover the true value of Δ in this noisy setting. In our simu-
lation, we considered various combinations of (d, ρ,Δ). The values of d and ρ considered were
df = (3, 4, 5, 10, 15, 20, 30, 60, 100) representing decreasing tail thickness (decreasing variability in baseflow)
and ρ = (0, .05, .1, .2, .3, .4, .5) representing increasing degrees of seasonal correlation. Several values of
Δ = (0, 1, 2, 3) were used to validate and check the sensitivity of estimation procedures.

The performance of JRFit versus traditional approaches was evaluated by studying the errors in the estima-
tion of Δ using JRFit, REML, LAD, and RFit methods. The mean squared errors of the estimates of Δ were
calculated based on M=10,000 iterations as in Kloke et al. (2009) where fresh data were generated in every

iteration. For example, for JRFit we have M estimates eΔJR;1 df ; ρð Þ;…; eΔJR;M df ; ρð Þ corresponding to various
degrees of freedom of the t distribution and various degrees of within season correlation. The Monte Carlo
estimate of the mean squared errors was calculated as

MSEJR df ; ρð Þ ¼ 1
M

∑
M

i¼1
eΔJR;i df ; ρð Þ � Δ
� �2

: (12)

MSEREML(df, ρ), MSELAD(df, ρ), and MSEWRS(df, ρ) were calculated analogously. The finite sample REs of JRFit,

LAD, and RFit versus REML are the ratios MSEREML df ;ρð Þ
MSEJR df ;ρð Þ ; MSEREML df ;ρð Þ

MSELAD df ;ρð Þ ;and
MSEREML df ;ρð Þ
MSER df ;ρð Þ , respectively. If RE = 1, then

the twomethods were judged to be equally efficient, whereas RE> 1 indicated that the competitor was more
efficient than REML in estimating phase effect.

The effect of outliers was evaluated by replicating the above simulation procedure using data from the
contaminated normal distribution instead of the t distribution. Huber contamination (El-Shaarawi, 1989;
Huber, 1964) of a base standard Gaussian with a Gaussian contaminant that has a higher variance was
employed. This distribution is given as (1 � δ)N(0, 1) + δN(0, σ2), where δ and σ2 represent the proportion
and the variance of contamination, respectively. In our simulation study, 0% to 35% contamination and con-
tamination variance of σ2 = 9 were used, where 0% represents no contamination and 35% represents heavy
contamination (Abebe & Bindele, 2016; Bindele & Abebe, 2015).

3. Results and Discussion
3.1. ENSO and AMO

The estimates and standard errors for Model 1 (additive effect of ENSO and AMO on baseflow) as well as
Model 2 (including the coupled effect of ENSO and AMO on baseflow) are provided in Table 3. The coeffi-
cients represent changes in baseflow (m3/s) from the reference group baseflows where the reference group
is taken to be the set of baseflow values of La Niña-AMO positive phase years (Table 2). ENSO coefficients indi-
cate the change in baseflow as the phase changes from La Niña to El Niño. AMO coefficients indicate the
change in baseflow as the phase changes from AMO Positive to AMO negative. Considering the additive
Model 1, ENSO and AMO coefficients were found to be positive and significant (at 5% level of significance)
by REML and JRFit methods for all stations. However, LAD failed to find ENSO effects to be significant for
all the stations. It also failed to find AMO effects to be significant for stations C, D, and E. RFit failed to find
ENSO to be significant for stations A and F. Considering the interactive Model 2, the interaction term was
found to be negative and significant by all the methods and for all stations except LAD and RFit that failed
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to find the interaction to be significant for station F. Negative and significant interaction terms indicate that
baseflow decreased overall when AMO changed phase from negative to positive primarily associated with
drops in baseflow during La Niña phases while baseflow remained largely unchanged during El Niño
phases. Comparing Model 1 and Model 2, it was found that removing the interaction term decreased the
individual effects (ratio of coefficient estimates to standard errors) of ENSO and AMO on baseflow
indicating the increased power of the interactive Model 2 in comparison to the additive Model 1. The
Rosner et al. (2003) WRS test for clustered data using individual climate variability phases separately gave
similar results to JRFit used on individual climate variability phases.

The results from the out-of-sample cross-validation study that calculated MAPE and MPSE values for the four
different procedures (REML, LAD, RFit, and JRFit) are presented in Table 4 and Figure 4. The within month
baseflow clustering effect found by calculating the intraclass correlations is also reported in Table 4. MAPE
andMPSE values of different methods were compared using paired t tests. Methods that differed significantly
following a Bonferroni correction (Bretz et al., 2011) are indicated by different letter superscripts (a, b, c, and
d) in Table 4. The recommended optimal procedure is given in the last column of Table 4. TheMAPE values for

Table 3
Coefficient of Estimation and Standard Error Values (in the Bracket) for Model 1 and Model 2 for REML, LAD, RFit, and JRFit

Station Effect

REML LAD Rfit JRFit

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

A ENSO 0.816 2.445 0.656 2.329 0.570 1.541 0.571 1.540
(0.290) (0.399) (0.490) (0.727) (0.299) (0.438) (0.235) (0.347)

AMO 1.544 3.136 2.035 2.570 1.275 2.212 1.274 2.212
(0.290) (0.394) (0.490) (0.719) (0.299) (0.433) (0.219) (0.361)

ENSO*AMO �3.183 �2.492 �1.946 �1.946
(0.558) (1.016) (0.612) (0.331)

B ENSO 7.773 19.155 7.812 15.063 5.199 11.380 5.198 11.384
(1.970) (2.700) (3.995) (5.251) (2.181) (3.189) (1.680) (2.552)

AMO 9.324 20.443 8.142 12.549 6.733 12.775 6.734 12.773
(1.969) (2.668) (3.996) (5.191) (2.182) (3.153) (1.645) (2.636)

ENSO*AMO �22.232 �15.939 �12.446 �12.447
(3.775) (7.342) (4.460) (2.447)

C ENSO 9.951 29.246 9.295 22.366 7.207 19.705 7.207 19.698
(3.126) (4.451) (5.179) (5.747) (3.418) (5.045) (2.683) (3.968)

AMO 10.452 28.025 7.571 20.058 7.111 17.800 7.110 17.799
(3.143) (4.248) (5.206) (5.482) (3.436) (4.812) (2.179) (3.477)

ENSO*AMO �35.076 �25.102 �22.540 �22.531
(6.000) (7.744) (6.798) (3.673)

D ENSO 11.482 29.651 9.347 22.366 7.221 17.826 7.230 17.823
(2.973) (4.055) (5.032) (5.538) (3.282) (4.577) (2.419) (3.365)

AMO 12.239 29.988 7.607 20.058 8.530 18.473 8.533 18.475
(2.973) (4.007) (5.033) (5.474) (3.283) (4.524) (2.095) (3.587)

ENSO*AMO �35.484 �25.102 �20.724 �20.727
(5.669) (7.744) (6.400) (3.675)

E ENSO 28.668 57.529 13.314 32.930 13.443 27.804 13.434 27.800
(5.768) (7.997) (8.004) (9.538) (5.194) (7.662) (4.680) (6.329)

AMO 22.849 51.041 15.178 28.262 14.157 27.649 14.166 27.650
(5.765) (7.903) (8.005) (9.429) (5.195) (7.574) (3.887) (6.238)

ENSO*AMO �56.368 �29.785 �28.882 �28.876
(11.179) (13.337) (10.713) (6.524)

ENSO 24.820 59.828 7.271 15.914 9.866 24.047 9.886 24.053
(6.997) (11.058) (10.340) (17.726) (6.662) (10.762) (4.440) (6.447)

F AMO 23.288 54.108 21.437 26.039 18.689 30.929 18.687 30.958
(7.173) (10.375) (10.599) (16.615) (6.829) (10.088) (5.347) (8.948)

ENSO*AMO �56.651 �16.673 �23.787 �23.806
(14.082) (22.560) (13.698) (8.890)

Note. The values represent changes in baseflow in cubic meters per second per changes in climate variable phase. Numbers in bold are not significant.
REML = restricted maximum likelihood; LAD = least absolute deviations; RFit = rank-based fit; JRFit = joint rank fit; ENSO = El Niño–Southern Oscillation;
AMO = Atlantic Multidecadal Oscillation.
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REML were found to be larger than those for LAD, RFit, and JRFit (Table 4 and Figure 4). MAPE values were
similar for JRFit, LAD, and RFit where, as expected, JRFit and RFit gave equal MAPE values (Table 4 and
Figure 4). The MPSE values for JRFit were found to be significantly smaller than all the other methods for
stations C, D, and E (Table 4 and Figure 4). The MPSE values for JRFit were not found to be significantly
different from REML for stations A and B and from LAD and RFit for station F. Table 4 shows that JRFit had
either the lowest MAPE and/or the lowest MPSE in comparison to all the methods, except for station F
where it is tied with LAD and RFit (Figure 4). Thus, JRFit was found to be an optimal procedure for
providing out-of-sample predictions of baseflow responses using climate variables. The MAPE and MPSE
values (Figure 2 and Table 4) are increasing from upstream to downstream (from stations A to F). This
might be due to the large variation in baseflow levels at the downstream stations (Figure 2) where the
range of the baseflow values are high for the stations E and F as compared to the upstream stations. It is
possible that the variation could be due to the size of the drainage basin (Table 1) and/or the existence of
a dam upstream of station E thus affecting the free flow of water (Figure 2).

3.2. Evaluation of the RE of JRFit

The RE values reported for various combinations of (df, ρ) are given in Figure 5 for the t distribution and in
Figure 6 for the contaminated normal distribution. The value of Δ did not have much effect on measured
REs. So only the results for Δ = 3 are reported. Considering the effect of tail thickness and clustering strength
on the efficiency of the various methods (Figure 5), it is noted that the methods that did not take clustering
into account (i.e., RFit and LAD) had RE curves always below that of JRFit. Hence, RFit and LAD were inefficient
compared to JRFit in all the cases evaluated, in some cases losing over 100% in efficiency. RFit and LAD were
also inefficient compared to REML, especially as the tails of the distribution approach the tails of the Gaussian

Table 4
Mean Absolute Prediction Error (MAPE) and Mean Prediction Standard Error (MPSE) in Cubic Meters per Second of Restricted
Maximum Likelihood (REML), Least Absolute Deviations (LAD), Rank-Based Fit (RFit), and Joint Rank Fit (JRFit)

Station name Mean values REML LAD RFit JRFit
Intramonth

correlation (%)
Selected optimal

procedure

A MAPE 2.733a 2.245b 2.225b 2.225b 54.50 JRFit
MPSE 0.421a 1.414b 0.465c 0.384a

B MAPE 19.446a 15.922b 15.622b 15.621b 61.04 JRFit
MPSE 2.849a 6.794b 3.346c 2.772a

C MAPE 28.246a 23.322b 23.017b 23.016b 59.20 JRFit
MPSE 4.609a 9.714b 5.249c 4.145d

D MAPE 27.959a 23.120b 23.051b 23.048b 59.00 JRFit
MPSE 4.278a 9.188b 4.884c 3.811d

E MAPE 52.105a 36.254b 35.942b 35.942b 55.00 JRFit
MPSE 8.439a 12.320b 8.123c 6.852d

F MAPE 59.951a 44.731b 43.554b 43.553b 55.30 LAD/RFit/JRFit
MPSE 11.503a 8.280a,b 11.201b 9.573b

Note. For each station, MAPE and MPSE results with different superscripts (a, b, c, and d) indicate significant difference
between procedures according to paired t test comparison followed by a Bonferroni correction.

Figure 4. (a) Mean absolute prediction error (MAPE) and (b) mean prediction standard error (MPSE) of restricted maximum
likelihood (REML), least absolute deviations (LAD), rank-based fit (RFit) and joint rank fit (JRFit) across all the stations.
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distribution (increasing df). However, they tended to perform better than REML for distributions that have
tails substantially thicker than Gaussian tails, especially when the correlation is high (large ρ). For instance,
for ρ = 0.4, RFit and LAD were 18–19% more efficient than REML for 3 degrees of freedom t distribution
but this efficiency quickly dropped to a loss of 6–7% efficiency for 4 degrees of freedom. For clustered data,
the competition is between REML and JRFit. For heavy-tailed data (df = 3), JRFit was 24–51% more efficient
than REML for the entire range of correlation scenarios. The efficiency of JRFit versus REML also increased

Figure 5. Estimated relative efficiencies (REs) versus restricted maximum likelihood: joint rank fit (blue), least absolute
deviations (red), and rank-based fit (black). Dashed line represents the theoretical asymptotic relative efficiency 3

π= of
joint rank fit versus restricted maximum likelihood for Gaussian (df = ∞ ) case when ρ = 0.

Figure 6. Estimated relative efficiencies (REs) versus restricted maximum likelihood: joint rank fit (blue), least absolute
deviations (red), and rank-based fit (black). Dashed line represents the theoretical asymptotic relative efficiency 3

π= of
joint rank fit versus restricted maximum likelihood for Gaussian (δ = 0) case when ρ = 0.
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consistently as the clustering in data became stronger (increasing ρ). JRFit was found to be less efficient than
REML for lighter tails (increasing df) and weak cluster correlation (decreasing ρ) with RE approaching the
theoretical 95.5% value, which is the case for independent data, as ρ approached 0. Generally, in all the
scenarios evaluated, JRFit’s efficiency loss relative to REML was never more than 8%, but efficiency gain
was up to 50% for heavy-tailed and highly correlated data.

Figure 6 contains the RE values with respect to changing levels of data contamination and clustering
strength. It was found that JRFit is more efficient than RFit and LAD as its RE curve lies above those for RFit
and LAD. REML was also more efficient than RFit and LAD as the RFit and LAD RE curves were below 1.
However, it was observed that the efficiency of REML deteriorated for data with strong clustering and with
increasing percentage of contamination. For ρ = 0.5 and 35% contamination, RFit and LAD were 20% more
efficient than REML. When there was no contamination in the data, JRFit’s RE versus REML increased from
92% for ρ = 0 to 111% for ρ = 0.5. One of the most interesting results was that, for this finite sample analysis,
JRFit outperformed REML for highly correlated Gaussian data. Moreover, JRFit’s RE increased steadily as per-
centage of contamination increased. For data with 35% contamination, JRFit’s RE versus REML increased from
122% for ρ = 0 to 134% for ρ = 0.5. In summary, while all methods lost efficiency with increasing contamina-
tion, REML lost efficiency at a higher rate. This gave an increasing RE (versus REML) curve for all the methods
as contamination increased.

Similar observations have been made for JRFit versus REML in Kloke et al. (2009) who performed a simulation
study limited to only two clusters where data were drawn from Gaussian and contaminated Gaussian with
20% contamination. The results from the Monte Carlo simulation performed in this study demonstrate that
the efficiency of JRFit holds for linear models with cluster-correlated errors in a larger setting. It was observed
that rank methods tended to perform better than REML when the cluster structure exhibits strong correla-
tion. While we simultaneously estimate and test the significance of effects, Galbraith et al. (2010) have also
discussed WRS for clustered data (Datta & Satten, 2005; Rosner et al., 2003) from a testing perspective.
They have also reported the perils of ignoring clustering from the perspective of inflated Type I error rates
of tests.

4. Conclusions and Recommendations

The hydroclimatic variables such as temperature, precipitation, streamflow, baseflow, and groundwater are
typically not normally distributed and often contain outliers. Thus, the nonparametric WRS test has gained
popularity for the analysis of such data due to its robustness to deviations from normality as well as the pre-
sence of outliers (Figure 3; Chiew et al., 1998; Diaz & Markgraf, 1992; Johnson et al., 2013; Keener et al., 2010;
Mitra et al., 2014; Roy, 2006; Tootle et al., 2005). However, these data display monthly or seasonal clustering
and the WRS test does not properly account for the intracluster correlations. The purpose of this study was to
evaluate the fidelity and efficiency of JRFit, an extension of WRS to modeling framework that accounts for
cluster correlation, against traditional statistical procedures. This was done via a Monte Carlo simulation
experiment where data sets were generated under various scenarios. The efficiency of JRFit was compared
to three traditional methods: REML, LAD, and the RFit (a model-based equivalent of WRS) methods. The
results confirmed that JRFit provides more efficient estimates of effects than the other three methods for
clustered data with heavier tails (or data with outliers) or strong correlation. JRFit’s efficiency gain was up
to 50% as compared to REML for heavy-tailed and highly correlated data. Researchers have extensively used
the WRS method in past studies. However, our results conclusively show that using methods that fail to
account for cluster correlations might lead to inefficiencies and possibly erroneous conclusions.

If interest lies in only testing, then the WRSmethods of Rosner et al. (2003) or Datta and Satten (2005) that are
specifically designed for clustered data may be used. However, if one is also interested in measuring effect
sizes and prediction of future responses, then we recommend the use of JRFit that simultaneously provides
estimation and testing. Moreover, the interaction of two climate phenomena can also be efficiently incorpo-
rated into themodel and tested using the JRFit approach (Singh et al., 2015). The prediction errors of the JRFit
provided the lowest MAPE when intramonth correlations values were high. Thus, the nonparametric
approach, JRFit, which was the focus of the this study, was not only found to be efficient for heavy-tailed
and contaminated data sets but also provided more consistent prediction of future values in the presence
of cluster correlation.
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The results obtained from this study give credence to the importance of examining the coupled effect of
interannual (e.g., ENSO) and multidecadal (e.g., AMO) climate variability phenomena. Incorporating decadal
and multidecadal climatic cycles along with ENSO can help provide a clearer picture of climate impacts on
baseflow. Moreover, the prediction standard errors of baseflow may further be reduced by incorporating
other informative variables such precipitation, temperature, and topographic elevations. This can provide
useful information to policymakers in devising water management policy and help in promoting drought
severity-based water restrictions in this region. The LMEs modeling framework used in JRFit is conducive
for including more variables in the regression and performing model selection. For example, depending
on the availability of data on several climatic/environmental variables, one may use the rank-based least
absolute selection and shrinkage operator of Abebe and Bindele (2016) to simultaneously select the
climatic/environmental variables that provide optimal prediction of hydrological processes as well as
estimate their effect.

There are methods, such as generalized linear mixed models (Breslow & Clayton, 1993), that can be used to
model clustered data from nonnormal distributions, but they require the data distribution to be specified.
JRFit is distribution free; thus, investigators are not burdened with making a distributional choice. Despite
its broad appeal, JRFit has certain limitations. The computational burden of using JRFit for high-dimensional
data may be quite large. So there is a need for improved algorithms to calculate JRFit estimates. A promising
approach may be to extend the iterated reweighted least squares fitting approach (Miakonkana & Abebe,
2014; Sievers & Abebe, 2004) in combination with REML. Moreover, at the moment, JRFit can efficiently
handle data for which the correlation structure is compound symmetric (Milliken & Johnson, 2004), but it is
still of interest to develop a version of JRFit that can provide efficient estimation and prediction for hydrocli-
matic data whose correlation structure may not be compound symmetric. The current version of JRFit is freely
available as an open source R package (Kloke, 2014; R Core Team, 2017).
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